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A comparative study is presented of the various recently developed open-shell perturbation theories

that are based on a restricted Hartree-Fock reference wave function. Included in this study are

issues concerning spin contamination, implementational considerations, and numerical comparisons
at the second-order of perturbation theory for equilibrium geometries, vibrational frequencies, and
singlet-triplet energy differences. Based on all of these considerations, it is concluded that the

z-averaged perturbation theory (ZAPT) method is to be preferred over the other recently devised

spin-orbital perturbation theories, while the spin-free OFV2 method possesses some advantages and

disadvantages relative to the ZAPT method. In particular, it is shown that oFr2 energies are not
invariant to rotations among singly-occupied degenerate molecular orbitals.

I. INTRODUCTION

There has been considerable interest recently in formu-

lating an open-shell perturbation theory that is based on a
restricted Hartree-Fock (RHF) reference wave function. I-6

There has also been much interest in developing an efficient
and accurate multireference perturbation theory (e.g., see

Refs. 7-13), but we shall limit our discussion here to single-

reference based approaches. The methods that have been de-

veloped thus far may be placed into two classes, those that
use a configuration state-function (CSF) basis 1'5 (i.e., S 2

eigenfunctions), and those that use a spin-orbital determi-

nant basis. 2-4'6 Approaches in the first group include the
OPTI and OPT2 methods of Murray and Davidson, 5 as well

as the method proposed by Hubac and Carsky. ! The RMP, 3

ROMP, 2 and ZAPT (Ref. 6) methods comprise the second
group (note that the ROHF-MBPT method of Bartlett and

co-workers 4 gives identical energies to the RMP method).

However, based on the evidence available thus far2-6,14-17

the success or nonsuccess of a particular perturbation theory

is not determined by the choice of n-particle basis, but rather

is determined by the choice of the diagonal matrix elements
that make up the denominators. In other words, it has been

shown empirically that a given perturbation series typically

converges more rapidly the larger the denominators (with the

proviso, of course, that the denominators are still physically
meaningful and not simply large numbers), t4 Larger denomi-

nators certainly require that the second-order correlation en-

ergy be smaller in magnitude, but these perturbation series

also show few if any oscillations (for example, see Refs.

2,3,15,18). Based on these analyses and also on some nu-
merical tests, it has been asserted t2'_5 that the perturbation

series for the OPTI method and also the method of Hubac

and Carsky will not converge as rapidly as the perturbation
series for the other methods (i.e., OPT2, RMP, ROMP, and

ZAPT).

As well as convergence of the perturbation series, there
are several other aspects to consider when evaluating RHF
open-shell perturbation theories. As mentioned above, some

of the methods (OPTI and OPT2) posses nth-order wave

functions that are eigenfunctions of S 2, which is important if

spin-dependent properties are to be investigated. Several of

the methods (OPTI, OPT2, and ZAPT) require that the spa-
tial parts of ,v and fl spin-orbitals be identical, which has

obvious computational advantages. Finally, some of the re-

cently developed RHF open-shell perturbation theories
(RMP and ROMP) possess different cr and fl spatial orbitals,

as well as having nth-order wave functions that are not S 2

eigenfunctions, but their perturbation series have been
shown 2'3'15to converge much more rapidly than conventional

unrestricted M611er-Plesset (MP) perturbation theory. It

should also be mentioned that spin projection of the unre-
stricted MP series has been investigated, 19but because these

methods are limited in the number of spin contaminants pro-
jected out, the perturbation energies lose the property of size-

extensivity (as discussed by Schlegellg). Size-extensivity has

been shown to be an important property over the last several

years (especially when treating a large number of electrons),

and therefore these partially projected schemes do not appear
promising.

The determinant based methods, ZAPT, ROME and

RME are all quite similar in their formulation. RHF open-

shell molecular orbitals are employed and H 0 is defined from

diagonal elements of the spin-orbital Fock operator. How-
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ever, the wave functions in ZAPT are Sx eigenfunctions

whereas those in RMP and ROMP theory are S: eigenfunc-
tions. RMP and ROMP differ only in their choice of canoni-
calization procedure for the molecular orbitals.

The purpose of the present investigation is to evaluate
the different RHF open-shell perturbation theories in three

areas. (1) The degree of spin contamination, or in other

words, how does the spin contamination appear and at what

order are the energy and perturbed wave function affected;
(2) the computational cost of each method and how this com-

pares to the computational cost of a closed-shell RHF MP

calculation, as well as other implementational consider-

ations; (3) the quality of numerical results obtained from

each method at second-order, and how they compare to ex-
periment when using large one-particle basis sets. These

three aspects are discussed in the following three sections,

respectively, while our conclusions are given in the final sec-
tion.

marion over these indices is implied. The eigenvalues e are
defined as the appropriate diagonal elements of th." ZAVI"

canonicalized spin-orbital Fock matrix, 6

_i F!'_ iB Faa- _'aB= ,_=FiB' _a= aa---aB,

+ ,_-6t +
_, =F +, es-=F'- (3)

• $o'- •

Epq are the standard unitary group generators (p and q refer
to any spatial molecular orbital)

Epq = (pa) t ( qa) + (pfl) t ( q fl) (4)

and/_pq are spin-flip analogs of the U(n) generators defined
previously 2°

Epq = (pct) t ( q _) + (pfl) t ( qa). (5)

Also, recall that the o-+ and o-- spin functions were defined 2w
according to

II. SPIN CONTAMINATION

The spin properties of the OPT I and OPT2 methods

have been discussed in detail previously. 5 Because H 0 is in-
dependent of spin in these theories, the nth-order perturbed
wave functions qt will be S 2 eigenfunctions, and there is no
spin contamination. For all of the determinant based methods

(i.e., RMP, ROMP, and ZAPT), H 0 is spin dependent and
does not commute with S 2. Thus, all of these methods will

possess some degree of spin contamination. It has been noted
(e.g., see Refs. 3,4,6) that since the reference function is an

S 2 eigenfunction, the perturbation series is automatically spin
projected. Thus the projected nth-order energy /_, and the
unprojected nth-order energy E, are the same,

_.--- ('I"01vo I't'._ ,)

= ('t'ol (H- H0)OIq'.-, ) = 0t%1(H - E0)Ol_. _,)

=(%IO(H-Eo)I%-,>=(_'olVI%_,)=E.. (1)

In the above equations, we have used the fact that O (the
projector which enforces spin symmetry) and H commute,

and the fact that _0 is a spin and H 0 eigenfunction. However,

as discussed by Murray et al., 14'15 the above proof shows

only that there will be no direct contribution from a spin
contaminant. In fact, the first and higher-order perturbed
wave functions are contaminated, so that there will be an

indirect contribution from spin contamination to E 3 and
higher-order energies. Interestingly, E 2 will not contain any
contamination under these conditions. This is discussed in
more detail later.

First, we examine which parts of H 0 introduce spin con-

tamination in the various theories. Employing the language
of second quantization, H 0 for ZAPT may be written in the
form

Ho= _,E. + _.E.o+ ½(C + C )e. +'( C - C )t.,
(2)

where indices i, a, and s refer to doubly occupied, virtual,

and singly occupied spatial orbitals, respectively, and sum-

1

o'+ =-_ (a+,8), (6)

1

o.-=_. (o,-/_). (7)

It is well known that the Epq generators commute with S 2,

however, it was shown 2° that the spin-flip analogs ffvq do
not commute with S 2. Thus, it is evident that the ZAPT H 0

does not commute with S 2 and that only the last tern" of H 0
will give rise to spin contamination. Note that the OPTI H 0
is obtained by deleting the last term in Eq. (2). It is also

interesting to note here a significant difference between
ZAPT and the RMP and ROMP methods. Due to the fact that

the ui,,,lric'JiB_eiB_and {ff_, f'_} pairs of Fock matrix elements are

different in RMP and ROMP theory, their H 0 will contain
significantly more terms, relative to ZAPT, that do not com-

mute with S2. For example, the RMP or ROMP H o rmy be
written as

H o=f+ Eii +f+ gaa "k-f; Es ` +f7 E_i +f_ EL +f/ETs,
(8)

where

f; = Lt epa + ePBI2_Sp_ j pB1,

f p- _ ±[¢pa ePB_
-- 2_dpo: J pB),

Epq = (p a) t ( qot) - (p fl) *( qfl),

(9)

(lO)

(11)

where l ePa ¢Pfllu t,,_,Jt,B_ are the appropriate spin-orbital Fock matrix

elements. Alternatively, the RMP or ROMP H 0 may be writ-
ten in z-averaged form (see Ref. 20),

+ + + -- . _ - ._

Ho=f, Eii+fa Eaa+fs Ess+f i Eii+fa E_+f_ _'_.
(12)

Because S 2 does not commute with either [_pq or E_q. spin
contamination arises from all of the molecular orbital _, not
just from the singly occupied orbitals as is the case for

ZAPT. Of course, this in itself does not prove that spir con-
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tamination in the RMP and ROMP methods will be numeri-

cally larger than for ZAPT, but it is suggestive.

For completeness, the OPT2 choice for H 0 is given by

H0= EiEii + EaEaa-t-I( _; q- ,Z )E ....

-'(C - C)_,.,(E,-2). (13)

Although this H o has no spin-symmetry breaking parts, and

similar to ZAPT allows two eigenvalues to be associated
with a singly occupied orbital, these advantages have been

achieved at the expense of introducing a more complicated
two-particle H o.

Next, we examine how spin contamination enters the

first-order wave function as a result of using a spin depen-
dent H 0. The general expression for the first-order wave
function is

_l =R- I V_ 0, (14)

where

R-_= P(Eo_Ho )- ip, (15)

V=(H-Ho), (16)

P = 1-I_o)(*o[. (17)

The operator R- i is the resolvent, and is a pseudoinverse. V

is the perturbation, and P is the projector onto the orthogonal
complement of _0, which defines the domain of the resoi-

vent. Examination of the commutator [S 2, R- iV] gives

[S2,R-_V]=R-_[Sz, V]+[S2,R-_]V

= - R - I[S2,Ho] - R - I[S2,R]R- 1V

= - R - I[S2,Ho] + R- J[S2,Ho]R- JV

=R-I[S2,Ho](R-IV- i ), (18)

where we have used the fact that S2 commutes with H and P.
We have also used the identities

[A,BC] = B[A,C] + [A,B]C,

[A,B-i] = -B-I[A,B]B-1. (19)

The latter identity may be used even with a pseudoinverse, as

here, provided that A commutes with the projector defining
the pseudoinverse domain. Using the above results, it is eas-
ily shown that

$2_ 1= s(s + 1)_1 + R- l[S2,Ho]Xlt j. (20)

This shows that the first-order wave function is contami-

nated, in general, because S2 does not commute with Ho, and

that the contamination is proportional to the product of the
resoivent and the commutator of S 2 and H o. This is a general

expression valid for any spin-orbital perturbation theory

which is subject to contamination. Clearly, the contamination

is of the same order in V as in _l, as noted by other
authors. 23'24 However, the presence of the energy denomina-

tor R- i indicates that numerically, the contamination may be

more appropriately grouped in the next higher order, be-
cause, as noted by Murray and Davidson, 14 the energy de-

nominator plays a more important role than V in determining
the size of the perturbation correction. Of course, this is en-

tirely dependent on the size of [S 2, H0]. As noted before,

there will be many more H 0 terms in RMP and ROMP theory
(relative to ZAPT) that do not commute with S 2. Therefore,

except in situations of fortuitous error cancellation, the mag-
nitude of spin contamination will be larger for these methods
than for ZAPT.

Finally, we examine how spin contamination comes

about in the perturbed energy expressions. At second-order,

62-- (_01VR-' vl_'0)-- ('t'oln[ i)(ilR-II i)(ilnlq%),
(21)

where we have inserted a resolution of the identity as a sum
over determinant eigenfunctions of H 0, used the fact that
R -I is diagonal in this basis, and used the fact that

(_oIVli)=(_olHli) (because the sum over i never includes
_0). Since _0 is an S 2 eigenfunction and H does not break

spin symmetry, there can be only spin pure contributions
from the sum over i. Thus E 2 contains no contributions from

spin contaminants, as noted previously. (This is not inconsis-

tent with the fact that _l is contaminated.) At higher order,
this is no longer the case. For example, at third-order one
contribution will be (see Ref. 24)

('J,'ol Vli)( ilR- ' li)( il vlj)(jlR- ' lj)(jl v[rt'o). (22)

First note that (i] Vlj)=(ilnlj) for the off-diagonal elements

(i.e., i 4:j). Therefore, in the determinant basis spin contami-
nation is not introduced from off-diagonal elements of V.
This is simply a generalization of the situation at second-

order. Clearly, the majority of matrix elements will be off-

diagonal. Second, note that contamination must also arise

from the resolvent R -I. Indeed, this is clearly where the

contamination arises in the first-order wave function (i.e., if
S 2 commutes with R -l, then _l is an eigenfunction of $2).

Another way to view the spin contamination (without loss of
generality) is by the use of a CSF basis. In this case the

resolvent has off-diagonal matrix elements that connect
states of different spin. Thus, in the case of the third-order

contribution above, if we regard the intermediate summa-

tions to be over CSFs rather than determinants (taking into

account that the resolvent is no longer diagonal in this basis),
one sees that contamination may arise only over the central
matrix element of V.

In view of this analysis, it is evident that in a determi-

nant basis spin contamination for ZAPT can arise only from
diagonal matrix elements involving determinants which dif-

fer from the reference determinant _o in their singly occu-

pied (spin) orbitals. This is because the only term in H 0 for

ZAPT which breaks spin symmetry is the one involving
those orbitals. Again, the majority of matrix elements in

ZAPT are unaffected by contamination. This is in contrast to
methods such as RMP or ROMP, where all matrix elements

for which spin contamination is possible will contribute

some contamination to a greater or lesser extent. It is thus

apparent that the ZAPT H 0 represents a good compromise
between the theoretical desire to minimize spin contamina-

tion and retain a simple H0, and the practical considerations

of efficiency and good series convergence (based on the

physically appealing model of having two types of singly
occupied orbitals distinguished only by their eigenvalue).
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II1. IMPLEMENTATIONAL CONSIDERATIONS

Ignoring the integral transformation step, the computa-
tional cost of the RMP and ROMP methods is clearly the
same as standard unrestricted MP theory, due to the different

a and fl spatial orbitals. Thus, for the evaluation of E 2, the
computational cost of RMP and ROMP will be about three

times that of an analogous closed-shell MP2 calculation, and

this factor will become larger for higher-order energies. The

computational cost for the transformation step is ignored,

since this is a fixed cost and therefore the computational

effort of the higher-order energies will be significantly
greater than that of the transformation step. We do note,
however, that Knowles et al. 3 showed that the transformation

step for the RMP and ROMP methods may be written in a
form in which the computational cost is less than that for the

unrestricted MP case. The computational cost of the OPTI,

OFF2, and ZAPT methods is more complicated, and we be-

gin by examining the second-order energy expressions. We
note first that the molecular orbital canonicalization schemes

defined for OPT1, OPT2, and ZAPT are all the same, and

7403

therefore the molecular orbital integrals are identical for all

three methods. In the following equations i and j shall refer
to doubly occupied spatial molecular orbitals in the n:ference

function, a and b refer to unoccupied molecular orgitals, s

and t refer to singly occupied orbitals, and m, n, p, and q
refer to any spatial molecular orbitals. Also, v,,,m represent
the (mp[nq) two-electron integral in Mulliken notation, it is

necessary to define the different "orbital energies" that are

used. For ZAPT the diagonal elements of the symmetric spin
orbital Fock matrix are _i, Ea, _+, and _, as defined in Eqs.
(3). The "orbital energies" for the doubly occupied o,bitals i
and the unoccupied orbitals a for OPT1 and OPT2 are the

same as those in ZAPT, but the singly occupied "orbital

energies" are different. Hence we define fs as

1

f_ = _ ( e+ + es- ). (23)

Using these definitions, the ZAPT, OPTI, and OPT2 ,;econd-
order energies may be written as

a a bt br abz_ ab ab_ abz,_ ab ab_

_,ZApT_ L _ KiKi s_jbt OsjVsj*-'2 -2 z_ --+ _ +E Oij[/Oij--OJi) +E Usjl'/Usj--OJs)

ia _i--Ea . t:f +_j--E b-e t i jab _i +_j-_a-Eb slab 6;+_j--E a-_b

i ab ab_ ab ab_ st st st st

+'_Is_r_t,tUst-Vts)tVst-V")--;X--_ - -- +il x (v#- vji)(vq- vii)"i+-----_J-" "_------_-'"_ '
_s + _rt -- Ea- _:b Us t

a a bt bt bs bs ab_ ab ab_ abz_ ab abx

_.OPT2_I_ KiKi + _ U_.__j2sj j_b s UsjUsj_ i_jab Uij [ZUij --Vji ) + E OsJ'ZUsj --Ujs )
_2 -- 2 za + _j -- _b Ei + E) -- E a -- _:b slab --4 -- -- --

ia _i--_a jb,s#t Es +_j--_b--_t + +
" " _s +lfj-_a-_b

St Sf St St

sb,_ sb sb, 41 (Ust --Uts J(Vst -- ,s +4
_i + _j- _5 - El, + ..... '

ijsb _s ijst

a a bt bt ab:,._ ab ab_ ab:_ ab abx sb:_ sb sbx

OPT' l__ KiKi _ vs]Vs) +i_abOiJ_'Z'Vij--Vji' +_ VsJt'ZVsi--VJ'_) +_js_ ____._ _uUt,z'v U-vii)
+

ia ei--ea ' fs+ej--_b--ft '. Ei+_j--Ea--Eb fs+Ej--_a--_b
r s jab "

lx._ , ab ab,, ab ab 1_--_ st st st st- (vq - v_i)(v q- v j,.)+-2., _v_, -v,, )tVs, v,, ) +-
4stab f s+ f r- _a- _b 4 i_jst _i + e)-- f s-- f ,

sb._ sb sb_

ijsb _i + _j- _] - _b

(24)

(25)

(26)

where

a_ ss
K, - - _ Via , (27)

$

Close examination of Eqs. (24)-(26) shows that at second-
order the computational cost of OPT1, OPT2, and ZAPT is

essentially identical, and that the only difference between

these theories involves the denominators. In particular, the

difference between ZAPT and OPT2 is very minor----only
involving the second term in Eq. (24) and the third term in

Eq. (25) (note that the second term in ZAPT is split into two

terms for oFr2, where certain of the semidiagonal elements
are treated differently). As it turns out, this minor difference
leads to a rather undesirable feature in the OPT2 formula-

tion. For example, consider a high-spin triplet electronic

state in which the two singly occupied orbitals are different

components of a degenerate molecular orbital, such as the

twisted Den form of triplet C2H a where the two CH2 groups

lie in perpendicular planes or the X 3£_ state of 02. Exami-
nation of the second and third terms of Eq. (25) sho_ s that

when s:/:t the contribution to the second-order ene-gy is

different than if s = t even though s and t are simply dilferent
components of a degenerate molecular orbital. This le ids to

E °PT2 being noninvariant with respect to orbital mixings be-

tween s and t. For example, for Dza triplet C2H, we obtain

either -0.221 286 or -0.222 672 simply by running the cal-

culation in the D e or C2o subgroups, respectively (performed

at the geometry reported in Ref. 5, using the 6-31G* basis
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set). In C I symmetry or when the degenerate orbitals are

within the same irreducible representation, we are free to

apply an arbitrary rotation to the components of the degen-
erate orbital, while still maintaining canonical orbitals. Thus

for C2H4 we happen to obtain an energy of -0.221 386,

although this can be arbitrarily changed, within limits. We

have shown through explicit calculation that none of the
other methods investigated here exhibit this problem. An-

other example is given by evaluating E OPT2 for X 3_g 02

using either DEh (-0.371 29) or D® h (-0.370 53) symmetry
at r = 1.239/_, in a standard DZP basis set. Clearly this is an

undesirable feature, especially when computing vibrational

frequencies about the symmetric point for molecules that

have nontotally symmetric vibrations, such as D2d C2H 4,

since this shows that OPT2 energies are not differentiable in
this situation.

In the quest for a perturbation theory applicable to the
relativistic Dirac-Fock equations, Dyali 25 has recently pro-

posed a modification in the definition of the OFI2 H 0 in

which degenerate open-shell orbitals will be treated consis-

tently thereby eliminating this noninvariance. However, the
modified theory moves closer to OPT1 (and further away

from ZAPT) suggesting that the perturbation series will not

converge as well as OPT2 or ZAPT. The interested reader is
referred to Ref. 25 for a more detailed account of this modi-

fied OPT2 approach.

As indicated above, the computational cost of OPTI,
OPT2, and ZAPT is the same at second-order, but more im-

portantly, this cost is essentially the same as that for an

analogous closed-shell system. For all three methods, the
main cost will arise from the "closed-shell" term, the third

term in Eqs. (24) and (26) and the fourth term in Eq. (25),
and this term is identical in form and cost to the closed-shell

MP2 energy. Thus, unlike RMP and ROMP, the OPT1,

OPT2, and ZAPT methods all require similar cost to closed-
shell MP theory at second-order. Given the nature of the

first-order wave functions, it is straightforward to show that

this similarity in cost will carry over to the third-order ener-

gies as well (examination of the MP third-order energy
expression 26 helps to clarify this point). At fourth order, it

has been pointed out by Murray and Handy 15 that because of

the nature of the OPT2 H 0, the factorization of the contribu-

tion from quadruple excitations that reduces the cost from
order N 8 to order N 6 (where N is the number of molecular

orbitals) is not possible. However, this lack of factorization

only applies to a small number of terms where an open-shell
orbital has a dual function as both occupied and virtual. Thus

the cost of OPT2 at fourth order will not be much greater
than that of ZAPT.

Given the similarity of H 0 for OPTI and ZAPT (men-
tioned earlier), it is reasonable to conclude that the compu-
tational cost of OPTI will either be similar to that of ZAPT
at all orders or less than that of ZAPT. In order to evaluate

the cost for ZAFI" at higher orders (higher than third), it is

useful to consider the discussion of the symmetry properties

of wave functions constructed from symmetric spin orbitals
presented in Ref. 20. From this discussion it is apparent that

when an excitation level appears for the first time in an nth-

order wave function, the symmetry relationship for the

"closed-shell" amplitudes (i.e., those amplitudes that are in-
dexed only by doubly occupied and unoccupied orbitals in

the reference function--these make up the majority of the

amplitudes) that multiply determinants from this excitation
level will be identical to those in standard closed-shell MP

theory. Because the limiting step in computational cost for a

given E, will always arise from an excitation level first ap-
pearing in the (n- l)/2-order wave function for n odd, and
n/2-order wave function for n even, it is clear that the lim-

iting computational cost for ZAPT will always be the same

as that for closed-shell MP theory. However, it is also appar-
ent from the discussion in Ref. 20 that because the relation-

ships among the "closed-shell" amplitudes become more
complicated in subsequent perturbed wave functions, the

lower-order computational cost will increase. For example,
for fourth-order the N 7 cost of ZAPT will be the same as for

closed-shell fourth-order MP theory, but the number of N 6

steps will be larger for ZAPT than for closed-shell theory.
The arguments presented herein may be easily verified by
examination of the spin-orbital equations 27 for the N 7 steps

in fourth-order MP theory.

No mention has yet been made of the so-called "direct"
perturbation theory implementations. 28"29These are methods

in which atomic orbital integrals are computed as they are

needed, and are not stored on disk. In terms of computational
cost, the OPT1, OPT2, and ZAPT methods have an obvious

advantage over the RMP and ROMP methods as the former

have only one set of spatial molecular orbitals whereas the
latter have two sets. Moreover, for the very same reasons, the

application of analytical gradient theory to OPTI, OPT2, and

ZAPT will be much simpler and will lead to much more
efficient formula than for RMP and ROMP.

In summary, at low orders of perturbation theory (second

and third) the RHF open-shell perturbation theories dis-
cussed here will increase in computational effort in the order
OPTI=OPT2=ZAPT<RMP=ROMP, and OPT1, OPT2,

and ZAPT will exhibit computational cost similar to closed-

shell MP theory. At fourth-order, the order of increasing cost
will be closed-shell MP theory _OPTI_-ZAPT_'OPT2

<RMP=ROMP. Based on the symmetry properties of wave

functions constructed from symmetric spin orbitals, it has

been argued that the limiting computational step for ZAPT
will always be similar in cost to that for closed-shell MP

theory, but that the computational effort in lower order steps

will be larger for ZAPT relative to closed-shell MP theory.

IV. NUMERICAL COMPARISONS

As a first comparison of the various RHF open-shell per-

turbation theories, we have examined the equilibrium struc-
tures and 3harmonic vibrational frequencies of X E_- O2,

2 + 2 3 2
a 3II, C2, X _ CN, X II NO, X B I CH2, X B I NH 2,

+ 2 n
X 2A I BH2, X 2B 1H20 , X A HNF, and X 2A I NO 2 , using

both the triple zeta with two sets of polarization functions

(TZ2P) and TZ2P plus an additional f function on the heavy

atoms and a d function on H (TZ2Pf) basis sets. The TZ2P
basis sets are Dunning's 3° (5s4p/3s) contractions of

Huzinaga's 31 (lOs6pl5s) primitive sets. All of the polariza-

tion function orbital exponents are contained in Ref. 32. In
all calculations, the heavy atom core Is-like molecular orbit-
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TABLE I. Comparison of second-order perturbation theory energies (Eh) , equilibrium geometries, and vibra-
tional frequencies (cm -I) for 02 , C2, CN, and NO, =

ZAPT OPTI OPT2 RMP ROMP Expt.h

O_I'Z2P

E c 0.099056 0.147 149 0.105476 0.105310 0.110 494 -..

r 1.2476 1.3551 1.2521 1.2618 1.2668 1.2075

to 1304.4 606.8 1283.9 1200. I I 168.5 1580.2
OCTZ2Pf

Ec 0.139857 0.186394 0.146244 0.145 914 0.150986 -..

r 1.2376 1.3192 1.2418 1.2499 1,2542 1.2075
to 1368.9 807.6 1348.7 1273.3 1244.4 1580.2

CCl'Z2P
E a 0.734 180 0.763 275 0.737 640 0.739 923 0.741 911 .-.

r 1.3169 1.3260 1.3182 1.3198 1.3199 1.3119
to 1640.8 1598.8 1634.2 1626.6 1627.9 1641.4

C2fI'Z2Pf

Ed 0.753 186 0.782 656 0.756 695 0758 947 0.760 963 .-.

r 1.3164 1.3254 1.3177 1.3192 1.3193 1.3119
to 1650.3 1609. I 1643.7 1636.4 1637.7 164 1.4

CN/TZ2P

E c 0.524 994 0.535 513 0.526 934 0.527 170 0.526 073 ..-

r 1.1871 1.1980 1.1880 1.1902 1.1886 1.1718
to 1854.5 1732.0 1844.5 1816.8 1832.7 2068.6

CN/'rz2Pf

Ee 0.548 818 0.559 547 0.550 772 0.551 026 0.549 914 ...

r 1.1878 1.1989 1.1887 t.1910 1.1893 1.1718

to 1853.7 1729.1 1843.3 1815.7 1831.1 2068.6
NOVI'Z2P

E f 0.676 150 0.689 559 0.678 214 0.677 479 0.678 571 ...

r I. 1579 1.1638 1.1585 1.1597 1.1585 1.1508

to 1895.8 1866.3 1895.6 1882.3 1899.9 1904.2
NO/TZ2Pf

E f 0.711902 0.725404 0.713980 0.713253 0.714333 .-.

r 1.1559 1.1616 1.1565 1.1577 1.1564 1.1508
to 1923.6 1894.4 1923.2 1910. I 1927.5 1904.2

"Bond lengths in A, Electronic states are X 3y. _-,a 3Ilu,
X 2E+, and X 2rl for 02 , C 2, CN, and NO, respectively.

_Reference 35.

':The energy is reported as -(E+ 150).

aThe energy is reported as -(E+75).
_l'he energy is reported as -(E+92).
fThe energy is reported as -(E+ 129).

als were frozen, and six-component d functions and ten-

component f functions were used. In the presentation of the

theoretical geometries and harmonic frequencies, more deci-

mal places are included than is normally considered relevant

in order to distinguish between the various perturbation theo-

ries for those systems that display only small differences.

The calculations were performed either with programs devel-

oped at Daresbury Laboratory that are interfaced to the

SEWARD (Ref. 33) integral program, or with programs devel-

oped at NASA Ames Research Center, some of which are

interfaced to the MOLECULE-SWEDEN (Ref. 34) program sys-
tem.

The equilibrium bond distances and harmonic frequen-

cies of the diatomics, obtained with the various methods, are

contained in Table 1. For comparison, the experimental

quantities 35 are also included. Examination of Table I shows

that the OPTI method yields the least reliable results, and

also gives results that are significantly different from those of

the other methods. In particular, r e for O 2 is 0.15-0.12 A too

long and tat is 700-900 cm-l too low. Based on the earlier

assertions that the OPTI perturbation series displays erratic

behavior, 15 it is not too surprising that OPT! yields the poor-

est results.

The agreement among the other methods for the bond

distances and frequencies is generally good, with the only

exception being 0 2. For 02, the OFI'2 and ZAPT mewhods

show markedly better performance than the RMP and ROMP

methods, although the difference between experimenl and

the OPT2 and ZAPT results is still rather large. It has been

shown previously that second-order perturbation theory does

not perform well for ground state 0 2, but in many inst,'mces

this type of molecule is useful to better elucidate the differ-

ences between perturbation theory methods that are sirailar.

In other words, a "difficult molecule" such as O 2 magnifies

the differences between the various methods, and gi_es a

better indication of how easily each method breaks d:)wn.

The agreement between experiment and the ZAPT, OFI'2,

RMP, and ROMP methods for C 2 and NO is quite good For

CN, the agreement is generally much better than for 0 2. The

only exception is for the harmonic frequency (with the

TZ2Pf basis set) where the error for both molecules is about

200-300 cm- a.

The equilibrium structures and harmonic vibrational fre-

quencies for CH 2, NH2, BH2, H20 ÷, HNF, and NO: are

presented in Tables II-VII, respectively. Examination of

these again shows that the OPTI equilibrium geometries and
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TABLE 11. Comparison of second-order perturbation theory energies (Eh),

equilibrium geometries, and vibrational frequencies (cm-i) for X 381 CH 2 .a

ZAPT OPTI OPT2 RMP ROMP Expt. h

TZ2P

E 0.045431 0.054979 0.047228 0.047494 0.047192 ...

rCH 1.0723 1.0741 1.0726 1.0732 1.072 5 1.0750

Z_HCH 132.57 133.10 132.98 132.41 132.81 133.88

wl(a 0 3211.9 3190.9 3208.7 3201.7 3 208.9 3020.7

o__(a i) 1164.9 1141.7 1148.3 1168.2 l 156.3 963.1

w3(b2) 3444.3 3426.5 3443.0 3434.3 3 443.4 3152.5

TZ2Pf
E 0.056313 0.066156 0.058132 0.058436 0.058108 ""

rCH 1.0731 1.0749 1.0733 1.0739 1.0734 1.0750

,LHCH 132.99 133.60 133.44 132.83 133.24 133.88

tol(a I) 3212.0 3191.4 3209.1 3201.9 3208.9 3020.7

m2(a 0 1137.2 1110.5 1118.9 1140.6 1127.7 963.1

a_(b2) 3446.2 3429.2 3445.4 3436.5 3445.3 3152.5

aBond lengths in ,_ and angles in degrees. The energy is reported as -(E

+39).

bExperimental equilibrium geometry and fundamental frequencies from Ref.

44.

TABLE IV. Comparison of second-order perturbation theory energies (Eh),

equilibrium geometries, and vibrational frequencies (cm i) for X 2A E BH2.a

ZAPT OPTI OPT2 RMP ROMP Expt. b

TZ2P

E 0.836394 0.839213 0.836861 0.836922 0.836772 "'"

rBH 1.1834 1.1842 1.1834 1.1837 1.1834 1.181

/_HBH 128.34 128.51 128.51 128.31 128.39 131

to t(a i) 2639.5 2631.8 2639.0 2636. I 2638.7

o_(a i) t057.5 1048.4 1050.1 1057.1 1055.4

to3(b2) 2802.2 2795.7 2802.5 2799.1 2801.8

TZ2Pf

E 0.843872 0.846781 0.844346 0.844409 0.844251 .-.

ran 1.1836 1.1844 1.1837 1.1840 1.1837 1.181
/_HBH 128.61 128.82 128.78 128.57 128.65 131

tot (a I) 2645.6 2638.2 2644.9 2641.9 2644.6

o_(a0 1042.0 1031.6 1034.3 1041.8 1040.0

to3(b 2) 2809.7 2803.8 2809.8 2806.4 2809.1

'Bond lengths in ,/_ and angles in degrees. The energy is reported as -(E

+25).

bVibrationally averaged structure from Ref. 47.

harmonic frequencies deviate most from the other perturba-

tion theories, although the differences between all of the

methods are fairly small for this set of molecules, especially

for the dihydrides. The results for the NO2 molecule display

the largest differences, but even here the maximum differ-

ences between the ZAPT, OPT2, RMP, and ROMP methods

is only 0.0021 /_, 0.36 °, and 17.1 cm -1. Based on this set of

triatomics, it is evident that there is not much to choose

between the various perturbation theories.

The agreement between theory and experiment is gener-

ally good for this set of molecules, especially taking into

account that most of the experimental results refer to vibra-

tionally averaged structures and fundamental frequencies. It

should be noted that it is typical for the anharmonic correc-

tion to the bending modes of dihydrides to be reasonably

large (e.g., see Refs. 36,37). In addition, the anharmonic cor-

rection for the bending mode in 3B I CH 2 is probably even

larger than normal owing to the very flat bending potential

for this molecule. The experimental data available for NO2

include harmonic frequencies, and for this system the agree-

ment between theory and experiment for to1 and _ is rea-

sonably good. The agreement for the antisymmetric N-O

stretch to 3, however, is not very good, with the ab initio

results being consistently about 150 cm-I too high. This type

of behavior for second-order perturbation theory has been

noted previously 38-4° for the closed-shell species HONO2,

CH 30NO 2, and CIONO2, and so is not limited to the open-

shell system NO 2, but seems to be a feature of the NO 2

moiety.

Examination of the second-order energies in Tables

I-VII shows that in every case the OPT1 method yields the

lowest energy, and that the ZAPT method gives the highest

TABLE !II. Comparison of second-order perturbation theory energies (Eh),

equilibrium geometries, and vibrational frequencies (cm-I) for X 2B l NH 2 .I

ZAPT OPTI OPT2 RMP ROMP Expt. b

TZ2P

E 0.758821 0.765216 0.760189 0.759629 0.759905 "'

rNH 1.0207 1.0219 1.02 ! 0 1.0209 1.0209 1.024

/HNH 103.07 103.00 103.07 103.07 103.07 103.3

toI (a I) 3453.3 3440.8 3450.7 3451.7 3451.9 3219.4

o_(a0 1562.9 1558.8 1562.4 1562.4 1562.4 1497.3

o_3(b2) 3555.8 3543.4 3553.0 3554.2 3554.4 3301.1

TZ2Pf
E 0.776 395 0.783 044 0.777 809 0.777 230 0.777 501 ""

rNH 1.0214 1.0225 1.0216 1.02t5 1.0215 1.024
Z_HNH 103.01 102.94 103.00 102.99 103.00 103.3

t°l(a I) 3450. I 3437.9 3447.4 3448.4 3448.7 3219.4

o_(a 0 1550.6 1546.7 1550.1 1550.2 1550.1 1497.3

to3(b2) 3557.4 3545.3 3554.5 3555.6 3556.0 3301.1

"Bond lengths in /_ and angles in degrees. The energy is reported as -(E

+55).

hVibrationally averaged geometry from Ref. 45 and fundamental frequencies
from Ref. 46.

TABLE V. Comparison of second-order perturbation theory energies (Eh),

equilibrium geometries, and vibrational frequencies (cm -j) for X 2B I

H2O+ .'

ZAPT OPT! OPT2 RMP ROMP Expt. _'

TZ2P

E 0.843602 0.850049 0.845112 0.844452 0.844664 -..

roH 0.9968 0.9979 0.9970 0.9970 0.9970 0.999

£HOH 109.10 109.04 109.12 109.09 109.09 110.5

tol(at) 3430.5 3418.8 3428.7 3429.2 3428.9 3213.0

taz(a _) 1490.1 1487.1 1489.4 1489.9 1489.7 1408.4

to3(b_) 3489.7 3478.3 3487.8 3488.4 3488. I 3259.0

TZ2Pf
E 0.863 862 0.870 594 0.865 430 0.864 749 0.864 949 ".

roH 0.9978 0.9988 0.9979 0.9979 0.9979 0.999

/-HOH 109.33 109.27 109.35 109.32 109.32 110.5

tol(a 0 3427.1 3415.8 3425.2 3425.8 3425.6 3213.0

to2(al) 1472.5 1469.5 1471.7 1472.3 1472.1 1408.4

to3(b2) 3488.8 3477.6 3486.8 3487.5 3487.3 3259.0

aBond lengths in ,/_ and angles in degrees. The energy is reported as -(E

+75).

bVibrationally averaged structure from Ref. 47 and fundamental frequencies
from Ref. 48.
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TABLE VI. Comparison of second-order perturbation theory energies (Eh),

equilibrium geometries, and vibrational frequencies (cm-t) for X 2A" HNE =

ZAPT OPTI OPT2 RMP ROMP Expt. b

TZ2P

E 0.819922 0.828485 0.821 658 0.821 256 0.821045 ..-

rHN 1.0256 1.0269 ! .0259 1.0258 1.0258 ( 1.06)

r_F 1.3732 1.3715 1.3730 1.3739 1.3729 1.37

/-HNF 100.00 100.00 100.00 99.96 99.99 105

tal(a') 3414.0 3398.6 3411.0 3412.3 3412.5 3167

to2(,') 1038.0 1046.8 1038.7 1038.6 1038.2 1015

a0(a ') 1483.9 1482.6 1483.4 1483.0 1483.9 1439

TZ2Pf
E 0.861 095 0.869 909 0.862 866 0.862 452 0.862 247 ...

r_ 1.0268 1.0281 1.0271 1.0269 1.0270 (1.06)

rNF 1.3622 1.3608 1.3621 1.3628 !.3619 1.37

/--HNF 100.23 100.24 100.24 100.20 100.25 105

to_(a') 3405.9 3391.1 3403.2 3404.7 3404.7 3167

o_(a') I066.9 I075.6 1067.7 I067.7 1067.6 I015

to3(a') 1483.9 1482.5 1483.4 1483.1 1484,0 1439

"Bond lengths in/_ and angles in degrees. The energy

+154). The HNF bend is given by to:.

bVibrationaily averaged structure from Ref. 47 (the NH

assumed) and fundamental frequencies from Ref. 49.

is reported as -(E

bond distance was

energy. The fact that the OPTI method yields the lowest
energy is consistent with earlier studies, 14.15which assert that

the OPT1 perturbation series does not converge very rapidly,

and that this is due to "small denominators" leading to a
larger (in magnitude) second-order energy. Moreover, the

conclusions of studies in which the convergence of perturba-
tion series was investigated would suggest that the ZAPT

series should display the most rapid convergence of the
open-shell perturbation theories studied here because its

smallest (in magnitude) second-order energy suggests that it
possesses the "largest denominators."

Finally, in Table VIII the singlet-triplet energy differ-
ences for CH 2 and Sill 2 are presented and compared with full

configuration interaction (FCI) values. 41'42Before discussing
the results, it is important to consider a few points. It is

generally accepted that due to the Fermi-hole concept, 43 the

self-consistent-field (SCF) level of theory tends to provide a

better description of high-spin states relative to low-spin
states. In other words, in the present example there is gener-

ally more electron correlation present in the singlet states
relative to the triplet states. Therefore, since the ZAPT

method usually gives the smallest (in magnitude) second-

order energy and the OPTI method generally gives the larg-

est, it may be expected that the ZAPT method will yield

TABLE VII. Comparison of second-order perturbation theory energies (Eh) .

equilibrium geometries, and vibrational frequencies (cm-i) for X 2/t NO2-_

ZAPT OPTI OPT2 RMP ROMP Expt. b

TZ2P

E

rso

AONO

"l(al)
ta2(al)

_(t,2)
TZ2Pf
E

rNo
AONO

oh(al)

_(a i)
to3(b2)

0.747997 0.767267 0.750448 0.750333 0.751396 -..

1.2075 1.2159 1.2087 1.2090 1.2095 1.1946

132.58 131.72 132.40 132.59 132.23 133.85

1308,5 1266.9 1300.9 1302.3 1295.8 1348.8

769.5 758.7 768.3 766.5 767.6 759.5

1801.0 1785.6 1783.9 1797.2 1792.2 1671.4

0.807514 0.826652 0.809935 0.809835 0.810867 .-.

1.2037 1.2116 1.2048 i,2051 1.2056 1.1946

132.86 132.04 132.70 132.89 132.53 133,85

1331.0 1290.9 1324.0 1325.0 1319.1 1348.8

768.2 757.4 766.9 765.2 766,3 759,5

1838.9 1822.7 1823.0 1835.0 1830.6 1671.4

"Bond lengths in ,/_ and angles in degrees. The energy is repotted as -(E
+204).

bFxluilibriumgeometry from Ref. 50 and harmonic vibrationalfreqJencies
from Ref. 5 I,

singlet-triplet splittings that are closest to the FCI value

while the OPTI method will yield the worst agreement. It

should be emphasized that an implicit assumption in this

assertion is that the open- and closed-shell perturbation the.o-
ries will recover about the same percentage of the total cor-
relation energy at second-order. Examination of the restdts in

Table VHI shows that in fact these expectations are ccrrect.

The OPT1 singlet-triplet energy differences are alway_ fur-

thest from the FCI results, while the ZAPT results are always
in closest agreement. However, it should be noted that at the

equilibrium geometries the differences between ZAPT and

the OPT2, RME and ROMP methods is much smaller than

the difference with respect to the FCI method. Thus, while

the ZAPT method should generally perform better in deter-
mining energy separations between electronic states of dif-

fering spin, the overall error will often be much larger than
the differences between the ZAPT, OPT2, RMP, and ROMP
methods.

V. CONCLUSIONS

Various single-reference perturbation theories based on a

RHF reference function have been investigated and con-
trasted. These include the OPT1, OPT2, RMP (also known as

ROHF-MBPT), ROMP, and ZAPT methods. The spin con-
tamination present in the RME ROMP, and ZAPT nth-order

TABLE VIII. Comparison of second-order perturbation theory and FCI singlet-triplet splittings for CH 2 and
Sill z (kcal/mol).

SCF OPTI OPT2 RMP ROMP ZAPT FCI =

CH2(A 3Bl-I At)

re 26.136 21.920 17.989 18.048 17.931 17.072 11.97 I
SiH2(A IAI-3BI)

1.0*G 5.488 11.462 14.332 14.146 14.363 15.022 18.343

1.5*r, 9.885 9.402 13.619 14.495 14.776 16.255 17.572

2.0*G -19.068 -19.979 -16.573 -8.292 -9.009 -5.232 4.310

"From Ref. 41 for CH 2 and ReL 42 for Sill 2. See these references for details of the calculations.

J. Chem. Phys., Vol. 100, No. 10, 15 May 1994



7408 Lee eta/.: Hartree-Fock perturbation theory

wave functions has been explicitly shown to result from the

fact that S 2 does not commute with H 0 and it has also been

shown that there are many more terms in the H 0 for RMP

and ROMP that do not commute with S 2 than in the H0 for

ZAPT. The computational costs of the various methods have

been discussed, and it is shown that the cost increases ac-

cording to OPTI_OPT2_oZAPT<RMP=ROMP, and that

the cost for the OPTI, OFT2, and ZAPT methods is similar

to closed-shell MP theory. Furthermore, based on the sym-

metry properties of wave functions constructed from sym-

metric spin orbitals, it has been argued that the limiting com-

putational step for ZAPT will be similar in cost to that for

closed-shell MP theory, but that the computational effort in

less expensive steps (i.e., not limiting steps) will be larger for

ZAPT relative to closed-shell MP theory. It is also noted that

due to the adoption of only one set of spatial molecular or-

bitals, the OPTI, OPT2, and ZAPT methods have a major

computational advantage over the RMP and ROMP methods

for the implementation of so-called "direct" schemes and the

application of analytical gradient theory. Examination of the

second-order energy expression for OPT2 has revealed that

OPT2 has the undesirable property of not being invariant to

orbital mixings between open-shell components of a degen-

erate molecular orbital. Two explicit examples of the magni-

tude of this noninvariance have been presented.

Finally, equilibrium geometries and harmonic vibrational

frequencies of several diatomics and triatomics have been

determined at second-order, and these results have shown

that in general the OPT! method yields the least reliable

values while the differences between the other methods is

usually small. The agreement between experiment and theory

(for the ZAPT, OPT2, RMP, and ROMP methods) is shown

to be quite good provided that the molecule is reasonably

well described by the single determinant reference function.

As electron correlation in the molecule becomes more diffi-

cult to describe properly, the RMP and ROMP methods ap-

pear to break down more readily than the OPT2 and ZAFI'

methods, although by this stage it is evident that second-

order perturbation theory is not really adequate. Singlet-

triplet energy separations for CH2 and Sill 2 are also pre-

sented and compared to FCI values. The ZAPT method

yields the best singlet-triplet splittings, and an explanation

for this is presented (it is also explained why OPTI singlet-

triplet energy differences will usually be the poorest). How-

ever, it is also noted that the differences between ZAPT and

FCI are usually much larger than the differences between

ZAPT and the OPT2, RMP, and ROMP methods.

Based on all of the considerations contained in this

study, it is concluded that the ZAPT approach is probably the

method of choice. The difference in results between ZAPT

and RMP, ROMP, and OPT2 is usually small, and the results

tend to be better for ZAPT (and OPT2) relative to RMP and

ROMP when the differences become larger. OPT2 has been

shown to have an undesirable feature concerning noninvari-

ance to orbital mixings (for degenerate open-shell orbitals)

that does not plague ZAPT. Most importantly, the computa-

tional cost of ZAPT is similar to that for closed-shell MP

theory, and the application of so-called "direct" procedures

and analytical gradient theory is much simpler for ZAPT

than for RMP or ROMP theory.
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